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Abstract: - A fast Magnetic Resonance Imaging (MRI) algorithm that also reduces reconstruction artifacts is 

proposed in this paper. The method employs a variable-density k-space under-sampling scheme that reduces the 

image acquisition time. The under-sampled k-space is converted to an MR image that is corrupted by artifacts. 

The image is fully sampled using a sub-Gaussian random sampling matrix prior to being reconstructed in the 

Discrete Wavelet Transform (DWT) domain using a Compressive Sampling (CS) greedy method. The k-space 

coefficients that are acquired during the under-sampling step are used to replace their corresponding 

coefficients in the k-space of the compressively reconstructed image. Computer simulation test results are used 

to compare the performance of the proposed algorithm to other reported CS methods based on the Peak-Signal-

to-Noise Ratio (PSNR) and the Structured SIMilarity (SSIM) measures. The results show that the proposed 

method yields an average PSNR improvement of 1.76 dB compared to the Orthogonal Matching Pursuit 

method (OMP). This translates to a 13% reduction in scan time for a given quality of the reconstructed image. 

 

Key-Words: - Compressive sampling, variable-density, MRI, OMP, scan time, PSNR, k-space. 

 

 

1 Introduction 
A signal that has a concise representation in some 

suitable representation domain can be reconstructed 

from its measurement vector whose cardinality is 

less than the length of the signal. The paradigm used 

to under-sample and reconstruct such a signal is 

termed Compressive Sampling (CS) [1, 2, 3]. The 

CS methods reduce the acquisition time of a signal 

by sampling it at a sub-Nyquist rate prior to 

reconstruction using either optimization or iterative 

or Bayesian methods [3, 4]. Although Magnetic 

Resonance Imaging (MRI) has significant 

advantages over other medical imaging modalities, 

it suffers the drawbacks of long scan time as well as 

artifacts that compromise the quality of the image 

[5-7]. Magnetic Resonance (MR) images are usually 

sparse in the Discrete Fourier Transform (DFT) as 

well as the Discrete Wavelet Transform (DWT) 

domains and therefore, CS methods can be 

employed to reduce the scan time [5, 8]. 

A block-based CS technique is proposed in [9]. 

Although the method shows good results for parallel 

MRI, it is likely to have a high computational 

complexity when applied to conventional MRI 

because the sensed segments have to be re-

combined. Qin and Guo [10] have proposed a 

compressive sensing MR image reconstruction 

scheme. The method incorporates Total Generalized 

Variation and Shearlet transform to compressively 

reconstruct images of high quality. The test results 

in the paper show that the method preserves the 

image features such as geometry, texture and 

smoothness. However, the quality of the 

reconstructed images is relatively low. For example, 

at 20% sampling rate, the average PSNR of the 

recovered image is 20.70 dB. In addition, the 

recovered images portray high inconsistencies in 

quality. This is evident from the large standard 

deviation of the PSNR of the reconstructed images 

which is 5.69 dB at 20% measurements. 

A CS-MRI method that assumes smoothness and 

high correlation in MR images is proposed in [11]. 

For images of body organs such as the brain that 

possess localized lesions, the method is likely to fail 

since the images are neither smooth nor highly 

correlated. A CS method for fast recovery of images 

from limited samples is proposed in [12].  The 

specially designed sensing technique yielded high 

reconstruction speeds due to the possibility of 

obtaining the solution to the CS recovery problem in 

a closed form. The imaging acceleration is however 

achieved at the expense of the image quality. For 

example, the average SSIM index achieved at 25% 
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sampling ratio is 0.81 with a standard deviation of 

0.035. 

Unlike the methods reported in [9-12], the proposed 

algorithm presented in this paper employs a 

variable-density k-space sampling approach to 

reduce the scan time and a coefficients re-insertion 

step to improve the image quality. Use of the Haar 

wavelet transform and a greedy recovery algorithm 

reduces the computational cost of the method.  

The rest of this paper is organized as follows: 

Section 2 gives an outline of the CS and MRI theory 

while the proposed algorithm is presented in section 

3. Results and discussions are presented in Section 4 

while Section 5 gives a conclusion and suggestions 

for future work.  

 

 

2 Theoretical Background 

 
2.1 Compressive Sampling Theory 
The Compressive Sampling theory asserts that, an 

N-length signal that possesses a concise 

approximation in some suitable representation 

domain can be reconstructed from 𝑀 ≪ 𝑁 

measurements. The signal is reconstructed as an N-

length, S-sparse vector 𝒙 in the representation 

domain. The under-sampled measurement of the 

signal 𝒇 can be viewed as a measurement vector 𝒚 

given by; 

𝒚 = 𝚽𝒇, (1) 

where  𝚽 is an 𝑀 × 𝑁 measurement matrix. The 

sparse signal 𝒇 can be expanded in an orthonormal 

basis domain as follows:  

𝒇 =  𝑥𝑖ψi
= 𝚿𝒙

𝑁

𝑖=1

, (2) 

where 𝚿 is an 𝑁 × 𝑁 representation matrix. The 

sparse representation of the signal and the 

measurement vector 𝒚 are therefore related by; 

𝒚 = 𝑨𝒙, (3) 

where 𝑨 = 𝚽𝚿 is an 𝑀 × 𝑁  sensing matrix that is 

also referred to as the dictionary [2, 5, 8]. In order to 

reduce the number of measurements required to 

reconstruct the vector 𝒙, the sensing matrix must 

posses low coherence. For all the sparse signals in a 

desired class to be uniquely reconstructed from their 

noisy measurements using CS methods, the sensing 

matrix must obey the Restricted Isometry Property 

(RIP). The matrix is said to obey the RIP if there 

exists a constant 𝛿𝑠 ≥ 0 which makes the following 

inequality to hold.  

 1 − 𝛿𝑠  𝒙 2
2 ≤  𝑨𝒙 2

2 ≤  1 + 𝛿𝑠  𝒙 2
2 , (4) 

where 𝛿𝑠  is termed the isometry constant of order s 

of the matrix and  .  2
2 denotes the square of the 

Euclidean norm. Equation (3) is under-determined 

and ill-posed. Therefore, a unique solution can only 

be obtained if the sparsity of vector 𝒙 is invoked. 

The tractable methods used to obtain an 

approximate solution for vector 𝒙 fall under the 

optimization, greedy or Bayesian categories.  

The optimization methods include the l1-

minimization and the Least Absolute Shrinkage and 

Selection Operator (LASSO) methods. The l1-

minimization method involves approximation of the 

S-sparse signal by solving the following convex-

relaxed problem.  

minimize 𝒙 1  subject to 𝒚 = 𝑨𝒙 (5) 

The LASSO method estimates the coefficients of a 

noisy sparse signal by solving the following least-

squares problem;  

minimize 𝒚 − 𝑨𝒙 2
2   subject to  𝒙 1 ≤ 𝜏, (6) 

where 𝜏 is a regularisation parameter that is 

dependent on the noise variance [1, 3, 5, 7].  

Although the convex optimization techniques are 

powerful tools for solving sparse signals problems, 

greedy or iterative methods can also be used to 

solve such problems. These algorithms rely on 

iterative approximation of the signal coefficients 

and the support. This is achieved either by 

iteratively identifying the support of the signal until 

a stopping convergence criterion is attained, or by 

obtaining an improved estimate of the sparse signal 

at every iteration. The methods generally have lower 

computational complexity than the convex 

optimization algorithms. The greedy methods that 

are commonly used in sparse signal recovery 

include the Matching Pursuit (MP) and its 

improvements. The improvements are such as the 

Orthogonal matching pursuit (OMP), Stagewise 

orthogonal matching pursuit (StOMP), Gradient 

pursuit (GP) and CoSaMP (COmpressive Sampling 

Matching Pursuit) algorithms [1, 4, 5].  

The Iterative Hard Thresholding (IHT) is another 

approach that is applicable to CS signal recovery. 

The method is generally employed as an algorithm 

for determining solutions of nonlinear inverse 

problems. The IHT algorithm commences with an 

initial estimate of the signal vector. Next, a 

predetermined number of iterative hard thresholding 

steps are carried to obtain a sequence of improved 

signal estimates [7]. 

 

2.2 Magnetic Resonance Imaging 
The Magnetic Resonance Imaging (MRI) is a non-

invasive technique that employs non-ionizing Radio 
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Frequency (RF) signals to generate good contrast 

medical images. When a body slice that is subjected 

to a static magnetic field is selectively excited, a 

transverse magnetization 𝑴 𝑥, 𝑦  is produced. The 

MRI equipment receiver coils detect a Free 

Induction Decay (FID) signal 𝑆(𝑘𝑥 , 𝑘𝑦) that is 

related to 𝑴 𝑥, 𝑦  by; 

𝑆 𝑘𝑥 , 𝑘𝑦 = 

  𝑴 𝑥, 𝑦 e−j2π[𝑘𝑥 (𝑡)𝑥   +𝑘𝑦 (𝑡)𝑦]𝑑𝑥𝑑𝑦

𝐹𝑥/2

−𝐹𝑥/2

𝐹𝑦 /2

−𝐹𝑦 /2

 
(7) 

 

where 𝑘𝑥 𝑡  and  𝑘𝑦 𝑡  are spatial frequency 

components in the read-out and phase-encoding 

directions respectively while 𝐹𝑥  and 𝐹𝑦  are the fields 

of view in the x and y directions respectively.  

The MR image is constructed from a set of sampled 

measurements of the FID signal using the two-

dimensional Inverse Discrete Fourier transform 

(2D-IDFT) [1, 13]. 

The FID signals are sampled in the spatial frequency 

domain at sampling periods of 𝛥𝑘𝑥
 and 𝛥𝑘𝑦

 with the 

highest spatial frequencies in the x and y directions 

being 𝑘𝑥𝑚𝑎𝑥  and 𝑘𝑦𝑚𝑎𝑥  respectively, to yield the 

signal 

𝒮(𝑢, 𝑣)  = 𝑆(𝑢𝛥𝑘𝑥
, 𝑣𝛥𝑘𝑦

)   (8) 

where 𝑢 ∈ [ −𝑁𝑟 2 + 1 , 𝑁𝑟 2 ], 𝑣 ∈

[ −𝑁𝑝 2 + 1 , 𝑁𝑝 2 ],  𝑁𝑟  is the number of read-

out samples per acquisition and 𝑁𝑝  is the number of 

phase encoding gradient steps. The reconstructed 

image I(a, b)  is given by the inverse 2D-DFT of 

𝒮 𝑢, 𝑣  as follows; 

𝑰(𝑎, 𝑏)

=   𝒮 𝑢, 𝑣 𝑒
𝑗2𝜋(

𝑎𝑢
𝑁𝑟

+
𝑏𝑣
𝑁𝑝

)

𝑣=𝑁𝑝 2 

𝑣=−𝑁𝑝 2+1 

𝑢=𝑁𝑟 2 

𝑢=−𝑁𝑟 2+1 

 (9) 

where 𝑎 ∈ [ −𝑁𝑟 2 + 1 , 𝑁𝑟 2 ] and 𝑏 ∈

[ −𝑁𝑝 2 + 1 ,  𝑁𝑝 2 ] [1, 5, 13, 14]. 

One of the demerits associated with MRI include 

the presence of patient-related as well as equipment-

related artifacts in the MR images. The artifacts 

together with noise compromise the quality of an 

MR image and may lead to a mis-diagnosis of a 

medical condition. Another disadvantage is the 

excessively lengthy image acquisition time. For 

example, the conventional Spin Echo (CSE) MRI 

has a scan time that is given by; 

𝑇𝑠 =  𝑇𝑅  𝑁𝑝 (𝑁𝐸𝑋) (10) 

where 𝑇𝑠 is the scan time, TR is  the pulse repetition 

time, 𝑁𝑝  is the number of phase encoding gradient 

steps and NEX is the number of excitations per scan. 

By decreasing 𝑁𝑝 , the image acquisition time is 

reduced proportionately [13, 14]. 

 

2.3 Image Quality Measures   
Two of the commonly used image objective quality 

metrics are the Peak Signal to Noise Ratio (PSNR) 

and the Structural SIMilarity (SSIM) index. The 

PSNR of a PQ pixels reconstructed image 𝒈 is 

given by; 

𝑃𝑆𝑁𝑅 = 10log10  
𝑃𝑄𝐿2

   𝒛 − 𝒈 2𝑄
𝑗 =1

𝑃
𝑖=1

  (11) 

where 𝒛 is the ground-truth image and 𝐿 is the 

maximum pixel intensity value in 𝒛. Although the 

PSNR measure does not match well with the 

characteristics of the Human Visual System (HVS), 

it has the advantage of simplicity [1].  

The Structural SIMilarity (SSIM) index agrees 

well with the image quality judgment of the HVS. 

The SSIM of a reconstructed image 𝒈 relative to a 

ground-truth image 𝒛 is given by; 

𝑆𝑆𝐼𝑀 𝒛, 𝒈 = 

 2µ𝑧µ𝑔 + 𝐶1  2𝜎𝑧𝑔 + 𝐶2 

 µ𝑧
2 + µ𝑔

2 + 𝐶1  𝜎𝑧
2 + 𝜎𝑔

2 + 𝐶2 
 

(12) 

where the parameters 𝜇𝑔  and 𝜇𝑧  denote the means of 

the reconstructed and ground-truth images 

respectively. The parameters 𝜎𝑔   and 𝜎𝑧  denote the 

standard deviations of the reconstructed and ground-

truth images respectively while 𝜎𝑧𝑔  is the cross 

correlation between the two images. The constants 

𝐶1 and 𝐶2 ensure that the value of  𝑆𝑆𝐼𝑀 𝒛, 𝒈  does 

not approach an infinite value as the denominator of 

(12) becomes vanishingly small [1, 15]. 

 

 

3 Proposed Algorithm   
A proposed fast CS-based method for MRI is 

presented in this section. The method uses a k-space 

under-sampling scheme that has a variable density 

that considerably reduces the MRI scan time. The 

imaging time reduction is achieved by using only a 

fraction of phase encoding gradient steps, 𝑁𝑝  to 

capture enough data for reconstructing the MR 

image. The robustness of the method is enhanced by 

replacing some of the CS reconstructed k-space 

rows with the coefficients that were directly 

captured during the under-sampling stage.  
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The stages that constitute the proposed algorithm 

are illustrated in the block diagram shown in fig. 1. 

For each variable density under-sampled k-space 

acquisition, a fixed number of low-frequency rows 

at the centre of the k-space plus an equal number of 

evenly spaced high-frequency rows are captured. 

For example, to sample 50% (32 rows) of the k-

space of a 64 × 32 pixels image, 16 rows are 

obtained from the centre of the k-space (rows 25 to 

40). The other 16 rows (1, 4, 7, 10, 13, 16, 19, 22, 

43, 46, 49, 52, 55, 58, 61 and 64) are selected to be 

evenly selected from either side of the picked 

central rows.  This acquisition paradigm can be 

modelled as an element-wise product of the full k-

space 𝓢 𝑢, 𝑣  and a variable-density mask as; 

𝓢𝒖
′  𝑢, 𝑣 = 𝓢 𝑢, 𝑣 . 𝓜 𝑢, 𝑣  (13) 

where 𝓢𝒖
′  𝑢, 𝑣  is the under-sampled k-space and 

𝓜 𝑢, 𝑣  is a proposed mask given by; 

𝓜 𝑢, 𝑣 = 

 
1       for  𝑣 ≥ 𝑣1 , 𝑣 ≤ 𝑣2 where 𝑣2 > 𝑣1 

0 for 𝑣 < 𝑣1 , 𝑣 > 𝑣2 and mod 𝑣, 𝑞 = 0
0                                                     elsewhere

   
(14) 

where 𝑣 ∈  1, 𝑁𝑝 , 𝑢 ∈  1, 𝑁𝑟  and 𝑁𝑟  is the 

number of read-out gradient steps [13]. For each 

measurement, the values of integers 𝑣1, 𝑣2 and 𝑞 are 

selected to achieve the desired percentage 

measurement. For a 50% under-sampling, 𝑣1 = 25, 

𝑣2 = 40 and 𝑞 = 3. The Fourier domain under-

sampled k-space is then converted into an MR 

image by taking the 2D-IDFT. This transformation 

reveals the coherent aliasing and Gibb’s artifacts [1, 

6]. The image is then re-shaped into a vector 𝒇′  

prior to being fully sampled using a random 

Gaussian matrix 𝜱 to yield a measurement vector 𝒚′  

as follows; 

𝒚′ = 𝜱𝒇′ (15)  

This random sampling converts the coherent 

artifacts in 𝒇′  into incoherent noise which is easier 

to denoise [6]. It also enables unique CS recovery in 

the DWT domain [4].  

Next, the MR image is reconstructed from 𝒚′  in the 

DWT domain using the OMP method. This step 

compressively reconstructs the rows of 𝓢 𝑢, 𝑣  that 

were not captured in 𝓢𝒖
′  𝑢, 𝑣  during under-

sampling [1, 5, 6]. The image is then converted into 

its k-space 𝓢′ ′(𝑢, 𝑣) by determining the 2D-DFT. To 

reduce the artifacts and noise further, the non-zero 

k-space rows of 𝓢𝒖
′  𝑢, 𝑣  that were captured in the 

first step of the algorithm are now inserted in 

𝓢′ ′(𝑢, 𝑣) to replace their corresponding CS 

reconstructed noisy rows to yield the output image 

k-space, 𝓢𝒐 𝑢, 𝑣 . 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.1. Block diagram of the proposed algorithm. 

The rows substitution is accomplished as follows;  

𝓢𝒐 𝑢, 𝑣 = 𝓢𝒖
′  𝑢, 𝑣  

+ 𝓢′′  𝑢, 𝑣 − 𝓢′′  𝑢, 𝑣 . 𝓜𝒖 u, v   
(16) 

where 𝓜𝒖 𝑢, 𝑣  is a mask that is complementary to 

𝓜 𝑢, 𝑣  and given by; 

𝓜𝐮 u, v = ones 𝑁𝑝  , 𝑁𝑟 − 𝓜 u, v  (17) 

where 𝓢′ ′ 𝑢, 𝑣 . 𝓜𝒖 u, v  is the element-wise 

multiplication of 𝓢′ ′ 𝑢, 𝑣  by 𝓜𝒖 u, v . Finally, the 

reconstructed image is generated by evaluating the 

2D-IDFT of 𝓢𝒐(𝑢, 𝑣).  

To test the proposed method using MATLAB 

simulation, ground-truth MR images were converted 

into full k-spaces by taking the 2D-DFTs which 

were then subjected to the proposed algorithm. 

 

 

 

 

 

𝓢𝒖
′  𝑢, 𝑣 = 𝓢 𝑢, 𝑣 . 𝓜 𝑢, 𝑣  

Variable density k-space under-sampling 

 

Full k-space 

 

Inverse 2D-DFT and matrix to vector 

conversion  

 

𝒚′ = 𝜱𝒇′ 

Random sampling of corrupted image  

 
OMP CS reconstruction in DWT domain 

 

IDWT, vector to matrix shaping and 2D-DFT 

 

Coefficients replacement:  𝓢𝐨 u, v =

 𝓢𝒖
′  𝑢, 𝑣 +  𝓢′′ 𝑢, 𝑣 − 𝓢′′ 𝑢, 𝑣 . 𝓜𝒖 u, v   

Centre-shifting of 𝓢𝐨(u, v) and inverse  

2D-DFT 

 
Output Image 

 

WSEAS TRANSACTIONS on SIGNAL PROCESSING Henry Kiragu, Elijah Mwangi, George Kamucha

E-ISSN: 2224-3488 117 Volume 15, 2019



4 Results and Discussions 
To demonstrate the effectiveness of the proposed 

algorithm, MATLAB simulation results of thirty 

two images obtained from the MR image databases 

in [16-18] are presented here. All the images were 

first re-sized using bicubic interpolation prior to 

cropping them to a size of 64 × 32 pixels in order to 

use a sampling mask of the same size for all the 

images. The PSNR and SSIM metrics are used to 

assess the image reconstructed quality [1, 15].  

In part (a) of fig. 2, a  64 × 32 pixels portion of a 

sagittal cross-section of a head ground-truth MR 

image is presented. An under-sampling mask that 

picks approximately 40% (26 rows) of the k-space is 

shown in part (b). The image reconstructed from the 

under-sampled k-space using the OMP method is 

presented in parts (c) and has a PSNR of 23.03 dB.  

The image shown in part (d) was reconstructed 

using the proposed method. This image has a PSNR 

of 24.80 dB and is therefore of a better quality than 

the OMP reconstructed one.   

Fig. 3 illustrates the stages of the proposed method 

using 50% measurements. Row (a) shows a 64 × 32 

pixels ground-truth image for a portion of the pelvis 

and its full k-space matrix. At the left of row (b), the 

image reconstructed from the under-sampled k-

space is presented. This image is corrupted by 

coherent artifacts and has a PSNR of 25.28 dB. The 

under-sampled k-space matrix is shown on the right 

of this image. The image reconstructed from the 

randomly sampled version of the image in part (b) 

using the OMP method is shown in part (c) together 

with its k-space. This image has a PSNR of 27.13 

dB and exhibits high-frequency artifacts as is 

evident from a comparison of the k-spaces in parts 

(a) and (c). After re-insertion of the directly 

measured coefficients into the k-space of the image 

in part (c), the proposed method produces an image 

whose PSNR is 28.65 dB. This image plus the k-

space matrix are presented in part (d). Inclusion of 

the coefficients re-insertion stage in the proposed 

method leads to an image quality which is better 

than that of conventional OMP.  

    
(a) (b) (c) (d) 

Fig. 2. Comparison of the OMP and the proposed CS 

methods. (a) Ground-truth image. (b) A 40% sampling 

mask. (c) The OMP reconstructed image. (d) Image 

reconstructed using the proposed method.  

 MR image k-space matrix 

(a) 

  

(b) 

  

(c) 

  

(d) 

  
Fig. 3.  Illustration of the proposed method. (a) Ground-

truth image and k-space. (b) Under-sampled image and k-

space. (c) OMP recovered image and k-space. (d) 

Proposed method recovered image and k-space.  

Two MR images reconstructed using different CS 

methods at 40% measurements are shown in Fig. 4. 

The first row (a) shows the ground-truth images of 

blood vessels as well as a torso. Rows (b), (c) and 

(d) show the images reconstructed using the OMP, 

LASSO and the proposed methods respectively. The 

images reconstructed using the proposed method 

reveal the details better than those recovered using 

the other two methods.  

In Table 1, the results of reconstruction of a thigh 

and a brain slice MR images using the proposed 

method and the LASSO method are shown. The k-

spaces of the images were under-sampled at various 

percentage measurements. 
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 Blood vessels Torso 

(a) 

  

(b) 

  

(c) 

  

(d) 

  
Fig. 4. Comparison. (a) Ground-truth MR image. 

(b) The OMP reconstruction. (c) The LASSO 

reconstruction. (d) Proposed method recovery. 

The second-left column of the table presents the size 

of the measurement vector as a percentage of the 

image size. The third and fourth columns show the 

SSIM values of the reconstructed images using the 

LASSO and the proposed method respectively. The 

results show that the proposed method produced 

output images with higher SSIM index values than 

the LASSO optimization method for all the 

percentage measurements. Using the PSNR quality 

assessment index, similar results to those presented 

in table 1 were obtained. These results are as 

summarized in table 2. In the first column from the 

left, two ground-truth images are presented. They 

are images of parts of the pelvic bone and a 

shoulder. The second-left column presents the 

percentage measurements used. The third and fourth 

columns show the PSNR values of the images 

reconstructed using the OMP and the proposed 

methods respectively. From the table it is evident 

that the proposed method performs better than the 

OMP method. For example, at 30% measurements, 

the proposed method yields approximately 1.71 dB 

and 1.45 dB PSNR improvements over the OMP 

method for the pelvic bone and shoulder images 

respectively.  

Table 1. The SSIM results of a thigh and a brain slice MR 

images  

Input 

Image 

Percentage 

Measurements 

(%) 

LASSO Proposed  

SSIM SSIM 

 

10 0.72 0.88 

20 0.81 0.95 

30 0.85 0.97 

40 0.85 0.98 

50 0.87 0.99 

60 0.89 0.99 

70 0.92 1.00 

 

10 0.61 0.81 

20 0.71 0.91 

30 0.77 0.94 

40 0.84 0.96 

50 0.85 0.97 

60 0.89 0.98 

70 0.90 0.99 

Table 2. PSNR results for a pelvis and a shoulder images  

MR 

Image 

Percentage 

Measurements 

(%) 

OMP Proposed 

PSNR(dB) PSNR(dB) 

 

10 21.50 23.82 

20 25.88 26.47 

30 26.78 28.49 

40 27.50 29.28 

50 28.18 29.91 

60 28.81 30.41 

70 29.62 31.00 

 

10 16.32 17.83 

20 19.58 20.12 

30 19.97 21.42 

40 20.38 22.64 

50 23.73 25.65 

60 26.49 28.74 

70 28.37 30.04 

A summary of the mean PSNR of the images 

reconstructed using three CS methods is presented 

graphically in part (a) of fig. 5. The proposed 

method produces images of higher quality than both 

the LASSO and OMP methods for all 

measurements. The average quality improvement of 

the proposed method at 30% or more measurements 

is 1.76 dB above the OMP method. This 

improvement translates to a 13% reduction in the 

scan-time for a given quality compared to the OMP 

method. For example, to reconstruct an image with a 

PSNR of 24.34 dB, the proposed algorithm and the 

OMP method require 30% and 43% of the full k-

space respectively. In part (b) of fig. 5, the variance 

of the PSNR of the recovered images is presented. 

This summary shows that the proposed method has 

better reconstruction consistency than the other two. 

Similar results were obtained using the SSIM index.  
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(a) 

 

(b) 

 
Fig. 5. Statistical summary. (a) Mean of PSNR. (b) 

Variance of PSNR.  

 

 

5 Conclusion 
A proposed CS-MRI algorithm has been 

presented in this paper. The algorithm reduces the 

imaging scan time by applying a variable-density k-

space under-sampling technique. Substitution of 

some of the reconstructed k-space coefficients with 

the sampled ones was employed to improve the 

signal quality. Experimental results have been used 

to demonstrate that the proposed method reduces the 

MRI scan-time by 13 % compared to the OMP CS 

method. It also improves the image quality by an 

average PSNR of 1.76 dB for a given percentage 

measurement. Future work will focus on improving 

the under-sampling mask as well as the k-space 

substitution process. 
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